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Abstract: Environmental–economic efficiency assessment is an effective way to evaluate the
degree of coordination between an economy and the environment. Previous studies on
environmental–economic efficiency have primarily investigated the efficiency of economic production
and have often overlooked the efficiency of pollution treatment in overall economic activities. We
applied a network data envelopment analysis model to evaluate the environmental–economic
efficiency of a multistage process with undesirable outputs in 30 Chinese provinces during 2001–2017.
The multistage process consisted of two sequential stages: economic production and pollution
treatment. The results show that the average environmental–economic efficiency across all provinces
was generally low but demonstrated a gradual upward trend during the study period. The spatial
pattern for the 30 provinces showed that provinces with medium or high environmental–economic
efficiency are mainly located in the eastern regions in China. Finally, few provinces exhibited economic
activities with high economic production and pollution treatment efficiency, with most provinces
generally having low economic production and pollution treatment efficiency. Hence, provinces with
different economic production and pollution treatment efficiency modes should implement targeted
improvement strategies according to their characteristics.

Keywords: environmental–economic efficiency; efficiency; undesirable output; economic production
efficiency; pollution treatment efficiency; network DEA; China

1. Introduction

In recent decades, environmental pollution, such as greenhouse gas (GHG) emissions and water
wastes, is a major obstacle to sustainable development of society. Meanwhile, the long-standing low
efficiency of resource utilization has aggravated the environmental degradation caused by the scarcity
of natural resources. The need to effectively address these problems, i.e., to minimize environmental
deterioration and use resources more efficiently, has captured the attention of governments and
academia worldwide [1].

Since its reform and opening up in 1978, China has achieved remarkable success in both economic
and social development, with a gross domestic product (GDP) growth of more than 20-fold over the
last four decades. However, this economic development has consumed large amounts of energy and
resources, which has led to various environmental issues. For example, China accounted for 25.9% of
global greenhouse gas emissions in 2014 [2] (This is based on data for carbon dioxide, methane, nitrous
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oxide, perfluorocarbon, hydrofluorocarbon, and sulfur hexafluoride emissions compiled by the World
Resources Institute). The “Chinese Environmental and Economic Accounting Report 2010” indicates
that the economic cost of ecological degradation in China reached 1.54 trillion RMB, accounting for
approximately 3.5% of the GDP in 2010. To promote the quality of economic growth, improving energy
conservation and emissions reduction as well as increasing energy and environmental efficiency have
become major challenges to China’s sustainable development in the future. In this context, policy
measures have been implemented by the Chinese government to improve energy utilization and
environmental efficiency. Measures adopted involve imposing energy-saving targets and emissions
caps set at the inception of the 13th “Five-Year Plan” (2016–2020), adjusting the industrial structure and
eliminating excessive capacity of the country. However, relieving environmental stress is complex in
light of China’s enormous economic growth, and enhancing economic development while maximally
reducing environmental impacts must be considered by Chinese policymakers.

Previous studies have suggested that accurate long-term assessment of economic performance
should incorporate both costs resulting from environmental degradation and benefits from
environmental improvements [3]. Therefore, indicators that reflect the performance of economic
production and pollution treatment should be available to policymakers to allow them to compare the
development of countries and regions, set goals, and implement effective policies, both globally
and locally [4]. Environmental–economic efficiency evaluation is an efficient way to assess the
degree of coordination between the economy and environment. Understanding the coordination
between economic production and environmental improvements and their combined overall efficiency
aids regional industrial transformation, industrial cooperation, and identification of core problems.
This work therefore aims to evaluate regional disparities in environmental–economic efficiency in
China, explore their influencing factors, and suggest targeted improvement strategies for regions with
different characteristics.

This study contributes to the literature on the assessment of regional environmental–economic
efficiency heterogeneity. One frequently employed approach to examine the environmental and
economic efficiency is to consider the input and output process of economic activities as a “black box”,
focusing on the efficiency of the economic production stage. However, regional economic activities
include both the economic production stage and pollution treatment stage. Therefore, analysis of
the internal economic activities considering interactions of pollutant treatment processes and their
influence on overall efficiency appraisal is an important issue. It allows policy makers to effectively
identify inefficiencies in internal processes, which provides basis for policy design.

Using a two-stage network data envelopment analysis model, we evaluated the
environmental–economic efficiency of a multistage process for 30 provinces in China during 2001–2017,
considering pollutant emissions (undesirable outputs) as critical intermediate outputs. Regional economic
activity is a synthesis of economic production and pollution treatment. Based on assessment results, we
illustrate the spatial pattern of environmental–economic efficiency for the 30 provinces. We show that
provinces with medium or high environmental–economic efficiency are mainly located in eastern regions
of China. The decomposition analysis suggests that economic production efficiency in eastern provinces is
generally higher than pollution treatment efficiency, whereas provinces with higher values of pollution
treatment efficiency are mainly located in northwestern China. We further analyzed factors that have
a significant influence on regional environmental–economic efficiency. By highlighting key influencing
factors and areas of weakness in economic production and pollution treatment, provinces with different
efficiency modes should adjust their improvement strategies correspondingly.

2. Literature Review

Environmental–economic efficiency has gained increasing attention from researchers and
policymakers. Effectively promoting economic development without harming the environment
is a major goal for countries globally. According to the World Business Council for Sustainable
Development, the basic concept of environmental–economic efficiency is explained by a comprehensive
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index measuring environmental impacts accompanied by economic activities. It involves economic
products and services as well as environmental resource consumption and emissions. This
concept implies that the pursuit of economic growth cannot be solely dependent upon the costs
of environmental degradation [5,6]. (Other concepts, such as eco- and energy efficiency, are related
to the concept of environmental–economic efficiency. According to the World Business Council for
Sustainable Development’s definition, eco-efficiency is achieved through the delivery of “competitively
priced goods and services that satisfy human needs and bring quality of life while progressively
reducing environmental impacts of goods and resource intensity throughout the entire life-cycle to a
level at least in line with the Earth’s estimated carrying capacity”. Critical aspects of eco-efficiency
include reduced material and energy intensity of goods or services, reduced dispersion of toxic
materials, improved recyclability, maximal use of renewable resources, greater durability of products,
and increased service intensity of goods and services. Eco-efficiency has become synonymous with a
management philosophy geared towards sustainability, combining ecological and economic efficiency,
and is thus wider in its meaning and scope than environmental–economic efficiency. In addition,
energy efficiency differs from environmental–economic efficiency in that the primary goal of the former
is to reduce the amount of energy required to provide products and services. Improvements in energy
efficiency are generally achieved by adopting more efficient technologies and production processes
or by applying commonly accepted methods to reduce energy losses. An important motivation to
improve energy efficiency is to reduce energy use and promote energy conservation. This may result in
a financial cost saving to consumers if the energy savings offset any additional costs of implementing
energy-efficient technology.)

The concept of economic efficiency is closely related to the concept of environmental–economic
efficiency, as it evaluates the ability of a production unit achieving maximum yield given a set of inputs
and production technology. However, in most cases, it may not consider environmental influences
or undesirable outputs during production, such as emissions and environmental pollutants, and
thus cannot effectively reflect resource consumption and environmental efficiency. In fact, inefficient
production activities could result in excessive use of resources and high emissions levels. Hence,
environmental–economic efficiency could more comprehensively evaluate the ability to produce
more goods and services while reducing natural resource consumption and mitigating environmental
impacts [7–9].

Assessing environmental–economic efficiency is an effective way to quantitatively judge the
performance of economic production and the environment and their interaction. Previous studies
have proposed efficiency analysis methods for calculating environmental efficiency, which can mainly
be divided into parametric and nonparametric techniques, e.g., stochastic frontier analysis and data
envelopment analysis (DEA), respectively. Compared to stochastic frontier analysis, DEA does not
need to specify the functional relations between inputs and outputs and is able to measure the relative
efficiency of decision-making units (DMUs) with multiple inputs and outputs. It is more easily applied
in situations with multiple variables [10–14].

In the literature, different types of DEA models have been employed to evaluate
environmental–economic efficiency [15–19]. Based on DEA, total-factor frameworks have been widely
used for measuring economy-wide efficiency performance [15]. Generally, the three key input factors,
namely capital, labor, and resources, and economic output factors, such as GDP, are included in
conventional frameworks [16]. Halkos and Tzeremes [17] used traditional DEA to measure the
economic efficiency of the Greek prefectures and revealed regional growth in the 13 administrative
regions. Hailu and Veeman [18] argued that traditional measures of economic efficiency only use
desirable outputs, such as economic outputs, and ignore undesirable outputs, such as environmental
pollutants. As the evaluation of economic efficiency is distorted when human welfare is not considered,
most researchers have realized that some of the early estimates of economic efficiency and productivity
were biased [19].
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Nonetheless, GDP may not be an appropriate metric for measuring the wellbeing of economies [4].
Hence, the study of environmental–economic efficiency, incorporating economic and environmental
parameters, may satisfy the need for better measurements or at least provide information about the
sustainability of these theories. In response, some researchers have incorporated environmental factors
into the traditional DEA model. For example, Hailu and Veeman [20] assumed that environmental
pollutant emissions correspond to environmental resources used in production and regarded the
emissions of environmental pollutants as special inputs. While this treatment of undesirable outputs
may not reflect the real production process, emissions of environmental pollutants as undesirable
outputs are expected to be minimized [21,22]. Furthermore, some studies have transformed undesirable
outputs into “desirable outputs” [23]. These treatments suffer the problem that the condition where
desirable outputs are increased while undesirable outputs are decreased may not be met.

To overcome this defect, Tone [24] developed a more generalized non-radial and non-oriented
directional distance function using a slacks-based measure (SBM) considering undesirable outputs.
This model has an advantage over the radial and oriented model in previous attempts that either failed
to measure potential reductions in undesirable output [25] or could not measure slacks for individual
inputs and offer proportionate changes in all inputs to make DMUs efficient [26]. Non-orientation is
employed because it can accommodate the simultaneous contraction of inputs and undesirable (bad)
links as well as the expansion of outputs.

Furthermore, one limitation of radial models is that radial efficiency does not completely reflect
the inefficiency of a DMU [19]. Slacks need to be considered simultaneously with radial efficiency
to identify the “real” projection of a DMU. The SBM as a non-radial approach directly accounts for
input and output slacks in efficiency measurements, with the advantage of completely capturing
the inefficiency. The term “slacks” represents input excesses and output shortfalls and deals with
them directly by maximizing these slacks. This property is suitable for analyzing the reduction of
undesirable outputs, such as the production of waste gas. In contrast to traditional radial efficiency
measures based on the proportional reduction of input (or enlargement of output), the use of SBM
(instead of traditional DEA models) allows the analysis to directly deal with input excesses and output
shortfalls, called slack measures. The slack measures can capture the non-radial reduction in inputs
and non-radial increase in outputs.

Many studies have applied the SBM approach to evaluate environmental–economic efficiency.
Wang and Feng [15] employed an undesired-SBM model to analyze the key factors responsible for the
change in environmental and economic efficiency in China. Yin et al. [27] considered environmental
pollution as an undesirable output and used a super-efficiency model to describe the eco-efficiency of
30 Chinese provincial capital cities. Other studies have dealt only with environmental efficiency and
adopted the undesired-SBM model to measure regional environmental efficiency [28,29]. Most studies
have focused on the impact of factors such as environmental regulations and production efficiency on
environmental efficiency [30,31].

Moreover, previous studies have examined the environmental and economic efficiency problem
from different perspectives while considering the input and output process of economic development
as a “black box”. However, since actual economic development is not an isolated process and suffers
from high environmental costs in many cases, ignoring the undesirable output will not help to identify
the real cause of inefficiency [32]. Regional economic activities include both the economic production
stage and pollution treatment stage. However, many developing countries and regions generally
view the process of economic production as more important than the pollution treatment process.
If economic production efficiency is underestimated in these areas, the mitigation of environmental
governance—usually accompanied by a loss of economic growth—may not gain much attention
from policymakers.

Most published studies have focused on the efficiency of the economic production stage without
considering that of the pollution treatment stage. As such, these studies have not considered the
internal economic production process, interactions of pollutant treatment processes, or their influence
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on overall efficiency and were thus unable to effectively identify the efficient stage in economic activities.
If the pollution treatment process is ignored, a study concerned solely with either environmental or
economic efficiency cannot provide an overall and comprehensive appraisal.

From the viewpoint of a multistage process, environmental–economic efficiency could involve the
combination of economic production and pollution treatment efficiency. The former reflects the ability
of a production unit to obtain maximum output from a given set of inputs and production technology,
whereas the latter represents the degree to which pollutants and emissions from the economic
production stage are treated through labor employed, environmental infrastructure investments
and other funding.

This study consequently aimed to reconstruct regional economic capacities from a multistage
efficiency modeling approach. In contrast to previous studies, this study not only directly examined
the relationship between inputs and outputs but also considered linkages of intermediate outputs
between different stages. We opened the “black box” of regional economic activity and discuss how a
region can achieve superior environmental–economic efficiency. The results could help policymakers
understand how economic production and pollution treatment work within a particular economic
system and the extent to which the loss of resources and excessive environmental pollution might lead
to low environmental–economic efficiency. Regional economic activity is viewed from a multistage
perspective and is a synthesis of economic production and pollution treatment. We applied a two-stage
network DEA model to a set of 30 Chinese provinces to optimize the overall efficiency of economic
production and pollution treatment by considering undesirable outputs (pollutant emissions) as
critical intermediate outputs. Therefore, the evaluation framework in this study differs from that in
previous research by considering not only the efficiency scores of regional economic production and
pollution treatment but also the integrated environmental–economic efficiency in different regions
of China. The results could help policymakers understand how economic production and pollution
treatment work together within a particular economic system and key factors that contributes to
regional environmental–economic efficiency improvement.

3. Methods

3.1. Conceptual Framework for the Two-Stage Process

As indicated above, this study sought to develop a two-step analytical procedure for measuring
staged environmental–economic efficiency. To accomplish this, a process-oriented conceptual
framework of the regional development process needed to be constructed. Economic activity is
a complex process and should be evaluated as such, rather than as a single input–output activity.
Compared to one-stage models, two-stage models show the performance of individual stages and thus
are more informative for decision makers. In this study, following the literature, we divided economic
activity into two sub-processes: the economic production process and the pollution treatment process
(Figure 1).
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Figure 1 illustrates the relationships among inputs, outputs, and intermediate variables. The
economic production stage focuses on using resource and non-resource inputs (such as labor and
capital) to produce desirable outputs that are accompanied by pollution problems, that is, undesirable
outputs (such as wastewater and SO2) from the production process in Stage 1. The pollution treatment
stage focuses on recycling and disposal of pollution and wastes produced in the first sub-process.
There are two types of inputs in the second process. The first involves crucial pollutants that require
attention and preferential treatment. These are the intermediate undesirable outputs from Stage 1,
which become inputs for Stage 2. The second type is government investment in the form of large
amounts of funds and labor provided annually to protect the environment; these investments also
enter Stage 1 as an input.

The two sub-processes represent short- and long-term interests, respectively. The economic
production stage provides various kinds of daily necessities, such as goods and food, and supports the
normal work and life of humankind currently and in the near future. Therefore, this stage represents
short-term benefits in the present study. Increasingly, the pollution treatment stage is being established
to respond to the requirement of “sustainable development” to perpetually preserve the environment,
which represents long-term wellbeing. Environmental–economic efficiency, which is the combination
of economic production and pollution treatment efficiencies in this study, can represent both short-
and long-term interests.

3.2. Network DEA

Previous studies of environmental–economic efficiency considered efficiency evaluation as a
“black box” and failed to identify inefficiencies in internal processes. They thus provide little insight
into the sources of inefficiencies and the operational stages in which inefficiencies may arise. This
study therefore set up a two-stage process cross-region framework for regional economic activities
in 30 Chinese provinces. Each province was regarded as a DMU that employs labor, capital, and
resources as inputs to produce desirable and undesirable outputs. The environmental–economic
efficiency represents the ability of an economic system to translate inputs (labor, capital, and resources)
into economic profits and environmental benefits. It is related to the concept of productivity, which
improves when the same amount of inputs produces more outputs as a result of efficient resource
utilization and allocation.

DEA proposed by Charnes et al. [33] has been used to measure efficiency that considers only
the inputs consumed and final outputs produced, ignoring links among sub-DMUs, thus making
it difficult to identify ways for DMUs to improve their performance. Therefore, traditional DEA
models, such as undesirable-SBM and CCR models [34], apply only to the single-stage efficiency of a
system. However, in most real-world situations, DMUs can perform several functions and be separated
into different components in series. The entire production process usually includes both economic
production and pollution treatment (Figure 1). In this case, some components play important roles in
generating outputs by investing intermediate outputs obtained from previous components. Therefore,
we proposed a DEA network model that deals with chain relationships among sub-DMUs to measure
the environmental–economic efficiency of a two-stage process [35,36].

Previous studies have proposed the network DEA model to use the radial measure of efficiency in
the traditional DEA model [37,38]. Tone [24] and Tone and Tsutsui [39] further introduced a non-radial
network SBM approach for evaluating efficiency. The advantage of a network SBM is that efficiency
decreases strictly monotonically with a change in the degree of input and output slack, and it has
the stronger resolution power compared with traditional network DEA [40]. However, intermediate
products in this study specifically were undesirable outputs (pollutants) mainly generated by resource
inputs in the economic production stage and were treated as inputs in the pollution treatment stage. A
two-stage SBM model considering the treatment of undesirable output was applied in this case [41].

It was assumed that there are N DMUs, denoted by DMUj (j = 1, . . . , N), and each DMU represents
an administrative region of China. Furthermore, it was assumed that DMUj has m initial inputs, that
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is, X = (X1j, . . . , Xmj)T, and g final outputs, that is, H = (H1j, . . . ,Hgj)T, with desirable output Y =
(Y1j, . . . , Ysj)T and intermediate undesirable outputs F = (F1j, . . . , Fdj)T in the first stage. Undesirable
outputs F are used as inputs for the second stage along with a new external input R = (R1j, . . . , Rpj)T.
In the economic production stage, policymakers generally hope to obtain more output with less input
and discharge less undesirable output. The goal is to achieve the greatest economic efficiency while
minimizing undesirable outputs and maximizing desirable outputs.

When evaluating first-stage economic production efficiency based on the SBM model,
the intermediate variable F as the first-stage undesirable output might be inefficiently slack.
Simultaneously, when evaluating second-stage pollution treatment efficiency, the intermediate variable
F as the second-stage input might also be inefficiently slack, which differs from that in the first stage.
That is to say, the slack of F in the economic production stage indicates the degree to which the
reduction of undesirable output can achieve economic production efficiency, while the slack of F in the
pollution treatment stage means the degree of excess of pollutant inputs leads to pollution treatment
inefficiency. The intermediate variable F has different slacks in different stages. Considering this, the
slacks in the two stages need to be calculated separately, thereby computing their efficiency.

We defined E0 as the environmental–economic efficiency of the two-stage process: E1
0 is the

economic production efficiency in Stage 1, and E2
0 is the pollution treatment efficiency in Stage 2.

The measurement strategy was as follows: First, a network DEA model consisting of two stages was
established in Model 1, thereby calculating the slacks of the overall input and output variables. The
slack of intermediate variable F in Stage 1 (namely undesirable outputs) could be calculated by Model
2 with the unchanged slacks of input and output variables. Consequently, the economic production
efficiency in Stage 1 could be calculated using Model 3. Second, the slack of intermediate variable F in
Stage 2 (namely pollutant inputs) similarly needed to be measured by using Model 4, and Model 5
was subsequently applied to calculate the pollution treatment efficiency in Stage 2. Finally, according
to slack variables in Models 1, 3, and 5, Model 6 was used to measure the environmental–economic
efficiency in the entire stage.

From the perspective of economic development, pollution treatment forms a crucial part of
economic activities. As such, pollution treatment needs to be considered as the second stage of
economic activities, thereby acquiring the two-stage efficiency values. If the two-stage process were
evaluated as a single process, the condition of the internal sub-processes of economic activities
could not be identified, thereby failing to detect the effect of each sub-process on the entire process.
Otherwise, when the two sub-processes are separated to evaluate their efficiency individually,
the relationship between these sub-processes is not considered. The two-stage efficiency value is
calculated based on the measurements of efficiency value in each stage. If the pollution treatment
process is ignored, the estimation results of a single stage are not realistic and cause errors. The
valuation of two-stage environmental–economic efficiency could enable policymakers to understand
how economic production and pollution treatment work within the economic system and the
extent to which the loss of resources and excessive environmental pollution might lead to low
environmental–economic efficiency.
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Accordingly, this study set up a two-stage DEA model based on non-radial SBM to consider
undesirable output as follows:

E0 = mint− 1
m+p (

m
∑

i=1

Sx
i

Xi0
+

p
∑

i=1

Sr
i

Ri0
)

s.t.



1 = t + 1
s+g (

s
∑

i=1

Sy
i

Yi0
+

p
∑

i=1

Sr
i

Ri0
)

tX0 = XΛ1 + Sx

tY0 = YΛ1 − Sy

tF0 ≥ FΛ1

tF0 ≥ FΛ2

tR0 = RΛ2 + Sr

tH0 = HΛ2 − Sh

Sx, Sy, Sr, Sh, Λ1, and Λ2 ≥ 0

(1)

where sx ≥ 0, sy ≥ 0, sf ≥ 0, sr ≥ 0, and sh ≥ 0 are slack intensity variables of staged input and output,
implying lack of inputs and outputs; and Sx

i = tsx
I , Sr

i = tsr
I , Sy

i = tsy
I , Sh

i = tsh
I , Λ1 = tγ1, Λ2 = tγ2, γ1 and

γ2 are the two-stage intensive vectors.
Under the condition of maintaining constant input and output slack measures in Model 1, the

slack measure of undesirable outputs can be obtained as follows:

Max
d
∑

i=1

s f 1
i

Fi0

s.t.


X0 = Xλ1 + sx∗

Y0 = Yλ1 − sy∗

F0 = Fλ1 + s f 1

s f ≥ 0, λ1 ≥ 0

(2)

where sx* and sy* are slack variables calculated using Equation (1), and sf1 denotes the slack of the
first-stage undesirable output, which represents the degree to which undesirable output can be reduced.
In this study, economic production efficiency is defined as follows:

E1
0 =

1− 1
m

m
∑

i=1

sx∗
i

Xi0

1 + 1
s+d (

s
∑

i=1

sy∗
i

Yi0
+

d
∑

i=1

s f 1∗
i
Fi0

)

(3)

If E1
0 = 1, then DMU0 in the first stage is referred to as “efficient”, which indicates that

regional economic production efficiency is at its highest. However, Equation (3) only considers
the input–output efficiency of the economic production stage and neglects the impact of the
internal pollution treatment stage on overall efficiency, which fails to reveal the internal influencing
factor of environmental–economic efficiency. Therefore, it is necessary to consider the internal
structure of regional economic activity to analyze the overall efficiency of economic production
and pollution treatment.



Int. J. Environ. Res. Public Health 2019, 16, 1160 9 of 21

Under the condition of maintaining constant input and output slack measures in Model 2, the
slack measure of intermediate products (undesirable outputs from the economic production stage) in
the pollution treatment stage can be obtained as follows:

Max
d
∑

i=1

s f 2
i

Fi0

s.t.


F0 = Fλ2 + s f 2

R0 = Rλ2 − sr∗

H0 = Hλ2 − sh∗

s f 2 ≥ 0, λ2 ≥ 0

(4)

where sr* and sh* are constant variables calculated using Equation (1), and sf2 denotes the slack variable
of the Stage 2 input, namely the undesirable output as intermediate products from the economic
production stage. As such, pollution treatment efficiency is defined as follows:

E2
0 =

1− 1
d+p (

d
∑

i=1

s f 2∗
i
Fi0

+
p
∑

i=1

sr∗
i

Ri0
)

1 + 1
g

g
∑

i=1

sh∗
i

Hi0

(5)

If E1
0 = 1, then DMU0 in the first stage is referred to as “efficient”, which indicates that regional

pollution treatment efficiency is at its highest. However, when economic activity is efficient in each
stage of economic production or pollution treatment, this only indicates that inputs, outputs, and
intermediate variables in each stage are not slack. Overall environmental–economic efficiency should
consider the slack situation of inputs and outputs throughout the entire process as well as that of
inputs, outputs, and intermediate products in each stage. Based on the measurements above, overall
environmental–economic efficiency can be defined as follows:

E0 =

1− 1
m+d+p (

m
∑

i=1

sx∗
i

Xi0
+

m
∑

i=1

s f 1∗
i
Fi0

+
m
∑

i=1

sr∗
i

Ri0
)

1 + 1
s+d+g (

s
∑

i=1

sy∗
i

Yi0
+

d
∑

i=1

s f 2∗
i
Fi0

+
g
∑

i=1

sh∗
i

Hi0
)

(6)

We employed the model proposed in this study to measure regional environmental–economic
efficiency in each stage separately as well as in the entire process. Compared with a single input–output
system, our model could evaluate environmental–economic efficiency in each stage and further provide
insights for decision makers. In addition, being different from the two-stage traditional network DEA
model proposed by Färe, Grosskopf and Whittaker [36], Tone and Tsutsui [39] and An et al. [42], our
model could measure the slack of a two-stage system of input, outputs, and intermediate variables by
considering undesirable outputs.

3.3. Truncated Regression Model

Since the dependent variable (environmental–economic efficiency) is truncated from below at one,
and the independent variables that correspond to 1 can be observed, it has a censored structure. The
ordinary least-squares regression model does not provide unbiased and consistent estimates [43]. If
OLS regression in the Stage 2 estimation could predict scores greater than one, it might produce biased
and inconsistent parameter estimates unless under very peculiar and unusual assumptions about the
data-generating process that limit its applicability [44,45]. Put differently, truncated regression with
a bootstrapping approach that provides consistent estimation was adopted to examine influencing
factors using the following regression model:

θ̂ = α+ βi xi + εii = 1, 2, 3, . . . n (7)
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where εi ~ N (0, σ2
ε) with left-truncation at 1 − βi xi; a is a constant term; xit is the explanatory variable;

and βi is the coefficient of the ith influencing factor. For an overall picture and the details of the
estimation algorithm, we encourage the interested reader to refer to these studies for details described
in a step-by-step approach [44,46,47].

3.4. Data Sources and Description

Inputs in the economic production stage are capital, labor, and resources, whereas the output is
GDP. Undesirable outputs in the economic production stage are industrial wastes. Capital and labor
are traditional input variables used to study economic production efficiency. Since data for capital
stock are not available in the China Statistical Yearbook, this study employed a calculation based on
the estimation approach suggested by Jun et al. [48]. Estimation results were converted into constant
prices with 2000 as the base year. The actual formula used for capital stock in this study was Kt

j =
It
j + (1-δ)K−t

1 j , where Kt
j and K−t

1 j represent the capital stock of the jth province at times t and t−1,
respectively; It

j is the total volume of investment in fixed assets at time t; and δ is the depreciation rate.
The China Statistical Yearbook (2002–2018) provides the final number of employees at the end of a
particular year. Considering data availability, the total number of employees was used as a proxy for
labor in this study.

The study focused on the consumption of resources by regional economic activities, which resulted
in more comprehensive input indicators. There are three indicators of resources consumption: area of
land used for urban construction, energy consumption, and water consumption. Energy is an important
pillar in Chinese economic growth and must therefore be considered. The energy consumption in the
study consists of four parts: coal, crude oil, natural gas, and clean energy (i.e., hydropower, nuclear
power, and wind power). According to the different calorific value of these energies, total energy
consumption was used as an indicator after being converted to standard coal. Freshwater consumption
is not included in the traditional model, although it has a large effect on sustainability [49]. As water
depletion and waste are becoming increasingly significant in China, freshwater consumption was
included in the inputs. Land is a key input that has seldom been considered in previous studies.
However, the actual space used and the pattern of utilization vary greatly between years. Therefore,
because of the availability of data, this study adopted the area of land used for urban construction as
the proxy for urban industrial land use.

The provincial GDP was chosen as “good” output with the data at constant prices (base year =
2000). This served as the indicator of output in the economic production stage. Pollutant production
was chosen as the undesirable output. There are various types of pollutants with differences and
similarities. Based on Chinese data availability, we chose three types of indicators for pollution:
industrial wastewater produced, industrial waste gas produced, and industrial solid waste generated.
Since the environmental impact differs from pollutant to pollutant, it provides these pollutants with
different importance in the pollution evaluation. In addition, as the units of pollutants are different,
it is hard to directly compare the pollution degree caused by these wastes. A potential method to
solve this problem is to compare the monetary value of pollutants. However, due to the limitation of
data acquisition, it was not possible to assess the monetary value of pollutants from existing official
data sources, and only the amount of emissions from different types of pollutants could be obtained.
Therefore, to present the different importance of pollutants, this study endowed different pollutants
with weights through combination weighting approach of subjective and objective evaluation method
(Table 1), and produced the non-dimensional treatment for these indicators, thereby calculating the
comprehensive evaluation score of pollutions [50].
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Table 1. Subjective weights, objective weights and integrated weights.

Criterion Indicator Unit
Type of Weights

Subjective
Weights

Objective
Weights

Integrated
Weights

Industrial waste
production

Total amount of industrial
wastewater produced 10,000 t 0.297 0.302 0.246

Total amount of industrial waste
gas produced 100 million m3 0.540 0.331 0.433

Total amount of industrial solid waste
generated 10,000 t 0.163 0.367 0.321

Reduction and
utilization of waste

Amount of removal of COD from industrial
wastewater t 0.185 0.208 0.331

Amount of removal of AN from
industrial wastewater t 0.113 0.239 0.163

Volume of removed industrial SO2 t 0.349 0.217 0.192
Volume of removed industrial soot

and dust t 0.213 0.163 0.207

Volume of utilized industrial solid waste 10,000 t 0.140 0.174 0.107

Note: Data from Ministry of Environmental Protection of China. For the calculation of the integrated weight, refer
to the work of Qin, Sun, and Zou [50].

The comprehensive evaluation score of pollutions was calculated by the following equation:

Im =
n

∑
i=1

wizij (8)

In Equation (8), Im represents comprehensive evaluation score, n represents the number of
indicators for the corresponding criterions, zij is the standardized score of each indicator, and wi is the
integrated weight of each indicator.

Stage 2 is the pollution treatment stage, which deals with pollutants when additional contaminant
investment is needed to deal with the first-stage undesirable output. Inputs in the pollution treatment
stage include two parts: (1) external inputs, that is, pollution treatment labor and investment calculated
based on the funding used for environmental infrastructure construction and other fixed assets
investment; and (2) internal inputs, which are the undesirable outputs from the economic production
stage. Desirable outputs primarily include comprehensive waste removal and utilization, which
correspond to three types of expected treated pollution outputs. We used the removal of chemical
oxygen demand (COD) and ammonia nitrogen (AN) from industrial wastewater to represent the
expected output of industrial wastewater treatment [41]. SO2, soot and dust are the main pollutants in
industrial waste gas. We used the volume of removed industrial SO2, soot and dust as a comprehensive
indicator to represent the expected output of industrial waste-gas treatment. The volume of utilized
industrial solid waste was selected as the representative desirable output for industrial solid waste
treatment in Stage 2. To reflect the difference in the importance of pollutant treatments, the subjective
and objective comprehensive weighting method was also used to assess the comprehensive evaluation
score of their pollutant treatments (Table 1).

In our study, 30 provinces, municipalities, and autonomous regions were examined. Taiwan, Hong
Kong, Macao, and Tibet were excluded because of a lack of data for related indicators. To set targets
and develop suitable regional economic and environmental policies, we divided these provinces
into three traditional regions (eastern, central, and western regions) according to their economic
development and geographic features. The eastern region (11 provinces) is made up of Liaoning,
Hebei, Tianjin, Beijing, Shandong, Jiangsu, Shanghai, Zhejiang, Fujian, Guangdong, and Hainan; the
central region comprises Shanxi, Jilin, Heilongjiang, Anhui, Jiangxi, Henan, Hubei, and Hunan; and
the western region includes Inner Mongolia, Guangxi, Shaanxi, Gansu, Ningxia, Qinghai, Xinjiang,
Sichuan, Chongqing, Yunnan, and Guizhou. Environmental–economic efficiency of these regions can
be compared to show the regional differences between developed and developing provinces in China.
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Unlike in some other countries, Chinese statistical data only become available after a one-year
delay. Therefore, the observation period in this analysis was from 2001 to 2017. To comprehensively
and accurately measure environmental–economic efficiency, all the input, intermediate, and output
variables were considered based on the existing available data. The selection of variables and data
sources are shown in Figure 1 and Table 2.

Table 2. Variable selection and data sources.

Type Indicator Variable

Inputs of Stage 1

Capital Capital stock a

Labor Total number of employees a

Resource consumption Area of land used for urban construction a

Energy consumption b

Water consumption b

Desirable outputs of Stage 1 Economic outputs GDP a

Undesirable output of Stage 1 (as
inputs in Stage 2)

Comprehensive evaluation score of
industrial waste production

Inputs of Stage 2 Investment on environment
Investment used for environmental

infrastructure construction and other fixed
assets investment a

Pollution treatment labor Total number of employees related to
environment treatment b

Outputs of Stage 2 Comprehensive evaluation score of
reduction and utilization of waste

Notes: a Data from National Bureau of Statistics of China. b Data from. National Energy Statistics Department.

4. Results and Discussion

4.1. Analysis of Environmental–Economic Efficiency

Considering undesirable output, we employed a network SBM model to calculate economic
production efficiency (ECO_EFCY), pollution treatment efficiency (POL_EFCY), and overall
environmental–economic efficiency (E_EFCY) in 30 Chinese provinces from 2001 to 2017. Generally,
the average environmental–economic efficiency in the country as a whole over the study period was
0.386 (Figure 2), which was relatively low compared with Shi, Jun, and Wang’s and Zhou et al.’s
findings [29,51]. The results reflect the severity of the current ecological problem in China; in other
words, the rapid economic growth of China over the study period entailed costs of high resource
consumption and environmental destruction [15].
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Figure 2. Changing trends of overall environmental–economic efficiency in the eastern, central, and
western regions of China, and the whole country during 2001–2017.

Figure 2 shows the changing trends of overall E_EFCY in the eastern, central, and western regions
and the entire country from 2001 to 2017. Overall, E_EFCY showed a gradual upward trend, increasing
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by 4.2%, from 0.367 in 2001 to 0.409 in 2017. This revealed a significant improvement in the overall
environmental–economic efficiency in recent years. Only the eastern region’s average E_EFCY was
greater than the national average. The E_EFCY of the eastern region increased considerably over
the study period, with an average increase of 9.49%, compared to increase of 2.84% and decrease
of 1.18% in the western and central regions, respectively. This suggests that the increase in the
overall environmental–economic efficiency of the country as a whole was mainly attributable to the
improvement in efficiency in the eastern region. Two factors may contribute to this result: First, it is
influenced by the imbalance of economic development, as the eastern region is more developed than
the central and western regions. Second, as the eastern region’s industrial structure gradually matures,
industries from the eastern region that mostly comprise of high-pollution and -energy consumption
sectors are transferred to the western and central regions [30].

4.2. Analysis of Two-Stage Efficiency Values

To reveal the significant differences between the two stages, we present the trends in economic
production efficiency and pollution treatment efficiency in time series (Figure 3). As for the
decomposition of overall environmental–economic efficiency, the economic production stage had
a higher average score and more efficient processes than the pollution treatment stage. It is evident
that China overall performed well on the economic front, whereas resource and environmental
performance were not encouraging, which is in line with Wang and Feng’s findings [15]. This indicated
that economic growth in China has not decoupled from resource inputs and environmental pressure.Int. J. Environ. Res. Public Health 2019, 16, x 13 of 21 
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Figure 3. Changing trends of economic production efficiency (ECO_EFCY), pollution treatment
efficiency (POL_EFCY), and overall environmental–economic efficiency (E_EFCY) in China from
2001 to 2017.

Figure 3 shows that ECO_EFCY was at a high level (56.7%) in the base period and decreased
annually over the study period. In contrast, POL_EFCY increased noticeably from 0.280 to 0.413
during this period. More specifically, there was slow growth in POL_EFCY before 2006, after which
POL_EFCY in mainland China began trending upward. This was attributed to the technological
progress over the past few years. With the rapid development of the economy, the Chinese government
has gradually increased investment in “high-tech” industries, and a series of preferential policies have
been formulated to encourage innovation [52]. An explosion of new technologies and innovations has
enabled China to reduce environmental pollutant emissions and enhance pollution control performance.
Therefore, during 2001–2017, increased POL_EFCY was the main contributor to the improvement in
environmental–economic efficiency.

4.3. Spatial Pattern of Regional E_EFCY in China

Based on its average score, E_EFCY in the 30 provinces was divided into four levels (high,
medium, low, and very low) using the natural breaks classification method (Figure 4) [53]. As shown
in Figure 4, provinces with low or very low E_EFCY are mainly located in the northwestern and central
regions of China, whereas provinces with medium or high E_EFCY performance are mainly located
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in the eastern region. Furthermore, mainly in the eastern provinces, the scores of ECO_EFCY were
higher than those of POL_EFCY. In contrast, provinces with higher values of POL_EFCY are located
in northwestern China. More specifically, some coastal provinces, such as Beijing, Tianjin, Shanghai,
and Guangdong, performed well in ECO_EFCY, with average efficiency values of above 0.9, whereas
POL_EFCY scores in these provinces were relatively low, with average scores of less than 0.4. This
implied that, with current production technology, the overall POL_EFCY in these regions could be
improved by more than 60%. However, the scores of POL_EFCY in Hebei, Shanxi, Henan, Yunnan,
and Anhui were greater than 0.6, but low ECO_EFCY scores (less than 0.4) led to a moderate overall
E_EFCY in these provinces. The heterogeneity of many aspects, such as clean production technology,
industrial structure, and environmental regulation, may have resulted in this phenomenon [54]. The
technological and management levels of the eastern region are relatively higher, which plays an
essential role in reducing resource consumption and mitigating environmental pollution stemming
from production. Moreover, the rapid economic development in the developed areas expands the
demand for large investments in high-tech industries, which further promotes technological progress
and enhances resource utilization.Int. J. Environ. Res. Public Health 2019, 16, x 14 of 21 
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4.4. Analysis of Influencing Factors

Although the environmental–economic efficiency scores are worth presenting on their own, it is
even more informative to reveal some of the key determinants in the differences in E_EFCY. Based
on existing literature [31,55,56], fine influencing factors were chosen to analyze E_EFCY and were
expressed in the logarithmic form (Table 3). This strategy aimed to desensitize the estimation to outliers
and allowed for easy interpretation of the estimated coefficients [57].
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Table 3. Influencing factors of environmental–economic efficiency.

Influencing Factors Index Explanation

1. Industrial structure (x1) The proportion of tertiary industry accounts for GDP
2. The degree of opening-up (x2) Foreign direct investment
3. Urbanization level (x3) The non-agricultural share of total population in every province

4. Environmental regulation (x4) The proportion of the investment in environmental pollution
regulation to the GDP

5. Innovation ability (x5) Number of granted patents

The influencing factors of environmental–economic efficiency were analyzed using a truncated
regression model (Table 4). The advanced industrial structure had a significant influence on E_EFCY,
confirming that industrial structure contributed to their high environmental–economic efficiency,
which was enhanced by ongoing economic development and upgrades in industrial structures. In
many high-income regions, industrial structure changes reduced waste emissions, with a slight increase
in the service sector and a decrease in the manufacturing sector [29]. The degree of opening-up had
a negative impact on E_EFCY (p < 0.01). One possible reason for this phenomenon is that, based
on the “pollution haven” and “pollution halo” hypotheses, foreign direct investment could lead
to serious environmental pollution and resource consumption in some developing countries and
regions but enhance that of others [58]. Specifically, due to economic globalization in China, many
energy- and labor-intensive industries have gradually shifted from western countries to China [59].
Particularly, some local governments in China encourage foreign investment in such industries
to boost local economies, resulting in an overall negative impact of foreign direct investment on
environmental–economic efficiency.

Table 4. Results of truncated regression analysis.

Variables Coefficient Std. Error Prob.

X1 0.0968 * 0.0503 0.054
X2 −0.0319 *** 0.0065 0.000
X3 0.2099 *** 0.0804 0.009
X4 −0.0118 0.0017 0.424
X5 0.0139 *** 0.0017 0.000

Notes: Level of statistical significance: *** p ≤ 0.01, * p ≤ 0.1.

Environmental regulation in the model had a negative but not statistically significant impact
on E_EFCY. This point reminds us that improving the environmental–economic efficiency requires
resources to be preserved and pollutant emissions to be reduced in Stage 1 rather than the pollution
being harnessed in Stage 2. Environmental pollution regulations referred to in this study involve
self-financing from enterprises and government subsidies, allowing governmental investment to
benefit from pollution regulations. Pollution might be aggravated in cases where the invested
capital is applied to increase processing and manufacturing [60]. The coefficient of innovation
ability was positive but low, at the 1% significance level, which was consistent with our expectations.
Innovation can bring about technological progress, enhance economic production and pollution
treatment efficiency, and improve management costs and unexpected output decreases [29]. Enhancing
innovation to solve resource and environmental issues is therefore a feasible path.

4.5. Environmental–Economic Efficiency Improvement Strategies

The estimated scores of ECO_EFCY and POL_EFCY can be used to identify potential gaps in
E_EFCY in the examined provinces and provide specific policy implications for managing regional
economic activities. Using the recognized framework of environmental–economic efficiency, which
comprises ECO_EFCY and POL_EFCY, we present the most detailed comparative study to date on
E_EFCY in Chinese provinces. We plotted two dimensions of E_EFCY to analyze the gap between
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the dimensions, help discern the locations of the main dimensions influencing E_EFCY and provide
improvement strategies at the provincial level (Figure 5). To overcome the problem of selecting
arbitrary thresholds for distinguishing high and low ECO_EFCY and POL_EFCY, data were classified
based on mean values. The E_EFCY in the 30 provinces were classified into four types: Type A:
high ECO_EFCY and high POL_EFCY; Type B: high ECO_EFCY and low POL_EFCY; Type C: low
ECO_EFCY and low POL_EFCY; and Type D: low ECO_EFCY and high POL_EFCY.Int. J. Environ. Res. Public Health 2019, 16, x 16 of 21 
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Overall, thirteen provinces belong to Type C, and five to Type A. Possible optimization strategies
based on each type’s efficiency characteristics are described as follows:

• Type A: These provinces have relatively high environmental–economic efficiency in their economic
activities and may provide benchmarks of efficiency improvement for other provinces.

• Type B: There are six provinces with low POL_EFCY but high ECO_EFCY. They should maintain
their advantage of high ECO_EFCY, while improving POL_EFCY. This may include strengthening
research, developing pollutant management, and promoting technological innovation to reduce
pollutant emissions.

• Type C: These provinces have invested significant labor and material resources in economic
activities. Unfortunately, the benefits have not been fully realized, because they did not focus
on factors such as management of economic activities, resource consumption, and pollutant
emissions. If these provinces only invest in raising human and resource inputs without
implementing policies to increase outputs and reduce pollution, it will be difficult to improve
their environmental–economic efficiency.

• Type D: Six provinces emphasize pollution treatment, with relatively low efficiencies in the
economic production stage. These patterns point to the need for increased awareness of
economic development, including enhancing economic benefits, controlling investment costs, and
optimizing resource allocation.

Type B–D provinces have three possible paths for improving efficiencies in such a way that will
result in high ECO_EFCY and high POL_EFCY (Figure 6). Path 1 is a unilateral optimization path
(B→A; D→A). Type B and C provinces can improve their environmental–economic efficiency by
decreasing the disparity with Type A provinces in terms of one weak dimension. Path 2 is a gradually
increasing path (C→D→A; C→B→A), where Type C provinces adopt the aforementioned specific
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policies and flexible measures to first evolve into Types B or D and sequentially progress to Type
A. Path 3 is an aggressive optimization path (C→A) that requires provinces to efficiently address
weaknesses at each stage of their economic activities simultaneously.
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5. Conclusions

The purpose of this study was to provide an analysis of regional environmental–economic
efficiency from a multistage modeling approach. The “black box” of regional economic activity was
opened by considering both the relationship between inputs and outputs as well as intermediate
outputs’ linkages between different stages.

In our analysis, regional economic activities involve the economic production process
and pollution treatment process. Utilizing a two-stage network DEA model, we measured
environmental–economic efficiency at each stage and over the entire process in 30 Chinese provinces
from 2001 to 2017. Based on this, we comprehensively analyzed regional environmental–economic
efficiency heterogeneity in China, and disclosed particular weaknesses of regions from specific angles,
such as economic growth, environmental conservation and pollution control. Potential influencing
factors of environmental–economic efficiency were investigated using a truncated regression model.
Due to the disparities among provinces, there is no “one size fits all” solution. Our results suggest
possible effective paths for region-specific optimization strategy making, which could be based on
highlighting areas of weakness in economic production and pollution treatment.

The main conclusions are as follows: First, the average environmental–economic efficiency
(E_EFCY) in the country as a whole over the study period was 0.386, and there was a gradual
upward trend of the overall E_EFCY. The gap among regions in E_EFCY was significant. The average
environmental–economic efficiency of the eastern region was not only greater than the national average
but had a larger average increase than that in the central and western regions. This phenomenon
in the eastern region is to some extent consistent with the “pollution halo hypothesis”. FDI is a
double-edged sword, which transfers seriously polluted industries to developing countries, but also
brings advanced technology to these regions. Provinces in the eastern region were more developed
than those in the western and central regions. Because production and pollution costs increase in the
eastern region, pollution industries may not eventually shift from developed countries through FDI
to developed coastal areas in China. FDI may bring advanced environmental protection technology
to these areas that focused on resource conservation, production management improvements, and
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pollution reduction and treatment. However, due to low production and pollution costs, the polluted
industries in developed countries are more likely to transfer to the central and western regions through
FDI. In addition, China has implemented the industrial transfer policy in recent years, transferring
some seriously polluted industries from the developed eastern region to the central and western region,
which will reduce the environmental pollution in the eastern region [61].

Second, the decomposition analysis of environmental–economic efficiency shows that China as
a whole performed well on the economic front, whereas resource and environmental performances
were not encouraging. Since the 10th “Five-Year Plan”, Chinese government has paid much more
attention to the improvement of energy utilization and environmental governance. With government’s
policy and financial support, the environmental protection industry including waste incineration,
waste gas and water treatment has developed strongly. During the study period, growth in pollution
treatment efficiency has become a main contributor to the improvement in E_EFCY, whereas the
decrease in economic production efficiency is an obstacle. The spatial pattern for the 30 provinces
shows that provinces with medium or high E_EFCY performance are mainly located in eastern China.
Furthermore, the scores of ECO_EFCY were higher than those of POL_EFCY, mainly in eastern
provinces, whereas provinces with higher values of POL_EFCY are located in northwestern China.
This showcases the spatial heterogeneity of environmental–economic efficiency. Influencing factor
analyses suggest that industrial structure, level of urbanization and innovation ability had a positive
influence on environmental–economic efficiency.

Finally, by splitting environmental–economic efficiency into two dimensions, our approach
provided a means for understanding and visualizing how each key dimension varied among the
30 provinces, which helped to identify the best practitioners for benchmarking and shed light on
ways to improve environmental–economic efficiency by highlighting areas of weakness. Provinces
with different efficiency modes could adjust their strategies based on their efficiency characteristics in
economic production and pollution treatment accordingly. Additionally, there are three possible paths
for provinces without “high ECO_EFCY and high POL_EFCY” characteristics; the best path depends
on the regional abilities and current efficiencies.

Our analysis somehow generally supports the Kuznets curve and techno-optimistic theories
in the sense that it suggests developed regions have worse technical and environmental–economic
efficiency than those less developed ones in China. We especially notice some nuances between our
result and the Environmental Kuznets Curve (EKC). First, empirical EKC studies find evidence for
an inverted U-shaped pollution-income relation for many pollutants, in particular for short-lived air
and water pollutants that have local and immediate effects. In our study, the environmental–economic
efficiency concept more comprehensively evaluated the ability to produce more goods and services
while reducing natural resource consumption and mitigating environmental pollutions. Second, our
study shows that the main reason that developed regions in eastern China have a higher overall
environmental–economic efficiency is due to their good performance in the economic production
stage. They are actually not better than many central and western provinces in POL_EFCY. For those
less developed central and western regions, their relatively lower environmental–economic efficiency
is more attributable to lower values of ECO_EFCY, with many of them doing well in the pollution
treatment stage.

This study had certain limitations. The inputs of Stage 1 were not applied to Stage 2. Further
improvements could consider the inputs of Stage 1 as a shared resource in the inputs of Stage 2.
Another limitation, common to comparative efficiency cross-regional studies, is that the observations
obtained (i.e., provinces in this study) cannot be completely independent in terms of production
input–output correspondence. It must be recognized that there would be spatial spillover effects or
spatial correlations in economic efficiency among the 30 provinces. Future research considering these
issues would contribute to a better understanding of this phenomenon.
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